Executive Summary
Climate scientists have made tremendous advances in understanding and modeling the variability and predictability of the climate system. As a result, the prediction of seasonal-to-interannual climate variations and the associated uncertainties using multiple dynamical models has become operational at ECMWF, APCC, and IRI.  While this is a major break through in the history of numerical weather prediction, state-of-the-art of climate prediction is still in its infancy. 
The CliPAS project is an essential research component and international collaboration component of APCC. Its mission is to conduct cutting-edge research ahead of the current operation system worldwide and to prepare for transferring new technology to improve the current operational system. In the past year, we have devoted our research to and positioned ourselves on the forefront climate prediction research.  
In 2006, the coordinated project research community has been expanded to twelve institutions from USA, Korea, Japan, Australia, and China. The second CliPAS
 project meeting was successfully held at University of Hawaii on 9-11th January, 2006. We completed a four-season, 24-year (1981-2004) multi-model ensemble (MME) hindcast experiments. We collected all datasets consisting of 6 one-tier and 7 two-tier model systems. We developed and designed a number of metrics for validating hindcast performances. 


In 2006, prominent scientific achievements have been made on seasonal climate prediction and predictability study. We have assessed the current status of the seventeen climate prediction model’s performances on the long-term annual and seasonal mean, climatological annual cycle, interannual variability, seasonal prediction, and intraseasonal prediction. We proposed improved MME techniques. We determined major coupled models’ predictability for ENSO and pointed out the direction for improving ENSO prediction. We advanced a new concept and methodology for evaluating the practical predictability of the coupled climate models. We attempted experimental prediction of the monsoon intraseasonal dynamic prediction.
1. Project Activity 
The second CliPAS project meeting was held in Honolulu January 9-11th 2006. About 30 participants from 10 institutes attended and exchanged information about their climate modeling and prediction activities. Two planned coordinate activities were suggested in the meeting. It was recommended that all the models complete hindcasts starting from four initial conditions, i.e., from February 1st, May 1st, August 1st, and November 1st. Second, all the participants agreed that model hindcast data collected under the CliPAS project is made freely available to the research community.  The only restriction is that the users need to register prior to downloading the data. Each participating institute has contributed manpower and computing resources to fulfill this task. This is an important international contribution to APCC. The CliPAS team becomes the largest and best coordinated MME team worldwide. Refer to Appendix IV for more details.
The CliPAS research group has conducted retrospective hindcast experiment using either one-tier or two-tier system. We have collected 13 climate models’  hindcast dataset for four seasons at the UH APCC/CliPAS data server.  The one-tier system consists of 6 coupled models from NASA, NCEP, SNU, FRCGC, UH, and GFDL. Table 2 in Appendix I shows the detail description for each coupled model. The two-tier system consists of 7 stand-alone atmospheric models forced by predicted SST from FSU, GFDL, SNU/KMA, UH, IAP, and NCEP. Please refer to table 2 in Appendix I for detailed information. So far, 8 models among one-tier and two-tier systems have hindcast dataset for 4 seasons and 5 models have dataset for 2 seasons (winter and summer). Dr. June-Yi Lee has made tremendous effort in coordination of this activity. The obtained datasets allows for putting the MME on a firm scientific basis. The results and experiences achieved provided a useful management experience for APCC operational system development. The extent and quality of assessment is unprecedented.
2. Highlights of Scientific Achievement
The CliPAS team has carried out a most comprehensive assessment of the performance and prediction skills of seventeen state-of-the-art climate models in terms of their available historical retrospective predictions. The models being assessed consist of seven coupled climate models (one-tier systems) that participated in the European Union-sponsored “Development of a European Multi-model Ensemble System for Seasonal to Inter-Annual Prediction (DEMETER)” project that produced hindcasts for 1981-2002 period, and ten climate models (five one-tier and five two-tier systems) that participated in the Asian-Pacific Economic Cooperation (APEC) Climate Center (APCC) sponsored Climate Prediction and its Application to Society (CliPAS) project, by contributing hindcasts for the 1981-2004 period. Some of these models, such as ECMWF and NCEP models, are essentially operational weather forecast models. An overall report has been made public in the second Earth System Science partnership conference, Bejing November 9-12. A manuscript describing current status and challenges of dynamical seasonal prediction is under preparation for publication. 

Performance of annual cycle and its linkage with seasonal prediction skill
We designed a metrics of variables to objectively and quantitatively evaluate the models’ performance on climatological annual cycle. It is shown that the current coupled models can reproduce the annual mean and the first AC mode of precipitation with a skill exceed or comparable to the reanalysis datasets. The models, however, have difficulty to forecast the 2nd AC mode (the equinox asymmetric mode), especially over the Indian Ocean and western North Pacific (WNP). The uncoupled models have large positive biases in the leading AC mode over the WNP due to the absence of the atmospheric feedbacks to ocean. Over the WNP region, the most coupled models capture the mean and AC more realistically than uncoupled ones, but they tend to underestimate the precipitation amount and the interannual variability, thus degrading seasonal prediction skills. It is shown that the seasonal prediction skills are positively correlated with their performances on both the annual mean and annual cycle in the coupled climate models. More details refer to Fig. 1 and Fig. 2 in Appendix II. 
ENSO
We found that the correlation skill of the 12 CGCM’s MME forecast of NINO3.4 SST anomalies reaches 0.86 at a 6-month lead, beating statistical models performance and far better than persistence forecast. The forecast skills depend strongly on the phase of ENSO. The growth phases of both the warm and cold events are more predictable than corresponding decaying phases. ENSO-neutral years are far less predictable than warm and cold events. Stronger El Nino is more predictable. Forecast skill depends strongly on season. When forecast starts in February and May the forecast skills show faster drop with the lead time. Skills for forecasts starting from August and November are substantially higher. The reason for the “spring barrier” is partially due to the fact that predictions starting from February and May contain more events of decaying phase. Refer to Fig. 3 in Appendix II.
Global prediction of 2m air temperature and precipitation
The one-month lead seasonal forecast of 2 m air temperature is quite skillful in the global tropics and extratropics. Some come from persistence. But MME is superior to the persistence skill significantly in the eastern Hemisphere warm pool regions. The MME precipitation skills are generally good over the tropical between 10S and 20N. Prediction in DJF is evidently better than JJA due the model’s capacity in capturing the ENSO teleconnections. The correlation skill for coupled model MME seasonal rainfall forecasts in the Asian-Australian monsoon (A-AM) region remains moderate, varying from 0.3 to 0.5 depending on season. Predictions over the land monsoon regions are notoriously poor. The overall skill is shown to be better than what the empirical relationship indicated, especially in the tropical Pacific in JJA and East Asian monsoon region during DJF. Over the mid-latitudes, the seasonal prediction skills show robust wavelike patterns in both the southern and northern hemispheres. Refer to Fig. 4 in Appendix II.
Impacts of the model systematic errors
Forecast error growth in 13 coupled GCMs show similar seasonal characteristics with respect to the lead month. However, the dimension of error is model dependent. The phase of the ENSO cycle has an important influence. It is shown that with increasing lead time the characteristics of error growths in the tropical Pacific SST depend crucially on the properties of the models’ ENSO modes. Systematic model errors, such as biases in the amplitude, spectral peak, and phase locking to the annual cycle, are all factors of limiting predictability and degrading forecast skills especially at long lead times. Thus, improvement of the models’ coupled ENSO modes are key to successful long-lead forecast and to upgrading the predictability of ENSO after initialization influence is fade-out with respect to lead time.  Refer to Fig. 5 in Appendix II.
How effective is the MME prediction compared to individual model?
The skills of MME predictions beat any individual model provided each member model has a reasonable prediction skill. Correlation increases from 0.3 to 0.5. In theory, the MME skill depends on the skills of the individual models and the mutual independence among the member models. The best MME (the highest skill) may be achievable by an optimal choice of a subgroup of models, drawing upon individual models’ skill and the mutual independence among the chosen models. However, this practice depends on the length of the “training” period and thus cautions should be excercised in real operation system. However, it is shown that inclusion of low-skill models in MME can potentially degrade the MME skill. In the East Asian summer monsoon region, the models’ skills are moderate. In that case, a Mme made by subset of the best models can beat the 10-model MME. Refer to Fig. 6 in Appendix II.

Optimal MME technique for seasonal climate prediction
A new optimal multi-model ensemble technique (named MME3.1) has been proposed and evaluated for seasonal climate prediction using 15 climate models’ retrospective forecasts which participated in APCC/CliPAS and DEMETER projects. Fig. 7 in Appendix II shows four MME prediction results. The MME3 is based on the statistical downscaling method, which is named the stepwise pattern projection model (SPPM). The MME3.1 is an improved version of MME3 in which a procedure of predictor selection is adopted. Figure 7 compares the skill of MME3.1 with the respective skills of three existing MME methodologies which include simple composite (MME1), weighted MME with SVD method (MME2), and simple MME with SPPM (MME3). MME3.1 provides significantly improved skill over the globe as a whole, especially over the land area and extratropical oceans. The major improvement of MME3.1 is achieved against other MME methods over the regions in which the average of individual model skill is poor. It is found that the MME3.1 gets more effective than other MME methods as the number of models in constructing MME increase. 

The ENSO predictability & How to improve ENSO forecast?
In Figure 8, the forecast error reflects the skill of the current forecast and the lower bound of predictability. In coupled CliPAS models, the systematic errors in tropical SST double or more than double in the first two months of the forecast. After this fast error growth induced by initial condition errors, the error growth levels off and follows the identical model error with respect to the target month, regardless of initial months. For NINO34 index, it is the systematic error of model ENSO dynamics. The Lorenz curve is defined by the difference between two forecasts valid at the same time (Lorenz 1982). It characterizes the growth of initial error and represents the lower bound of the errors or the upper bound of predictability. As shown in Figure 8, the perfect model error growth, Lorenz curve of ensemble mean, is not growing. This result suggests that most significant improvement of ENSO prediction can be obtained by reducing the first month forecast error. In several CGCMs including NCEP CFS, SINTEX-F, and UKMO, the Lorenz curve of individual member grows as fast as forecast error because it has large ensemble spread due to instability of the coupled system. In contrast, in the ECMWF model, the Lorenz curve of each member does not grow as fast as forecast error curve, suggesting that the potential for improving prediction seems to be large. Large ensemble spread in some coupled system after removing the systematic error may be associated with the wrong properties of ENSO dynamics in the models.
How to determine precipitation predictability in the coupled models’ MME
How to determine the practical predictability of the tropical precipitation in the coupled climate models is unresolved issue. We propose two methods. The first relies on identification of the “predictable” leading modes of the interannual variations. The predictability is quantified by the fractional variance accounted for by these “predictable” leading modes. The second approach is based on the signal to noise ratio. Here the signal is measured by MME mean, while the noise is measured by the “spread” among individual model’s ensemble mean. We demonstrate the conceptual consistency between the two estimations using 10 coupled climate prediction models in APCC/CliPAS and DEMETER hindcast projects.  We also demonstrate that the MME prediction skill basically comes from the first four leading modes. Refer to Figs. 9 and 10 in Appendix II.
Asian-Australian monsoon predictability
While the overall correlation skill in rainfall prediction over the A-AM region is only about half of that in the tropical eastern-central Pacific, coupled model MME one-month lead predictions capture the first two leading modes of variability (accounting for 43% of the total variance in precipitation) with a verisimilitude that is at least comparable to or even better than that of the reanalyses (ERA 40 and NCEP-2). This is perhaps due to the fact that MMEs include ocean-atmosphere interaction processes, while reanalysis uses prescribed SST. However, the MMEs considerably underestimate the biennial tendency of the leading mode and the fractional variances of the first two modes. These results suggest that intrinsic chaotic behavior of the monsoon circulation accounts for the low predictability. Refer to Figs. 11 and 12 in Appendix II.
Intraseasonal predictability
The prediction of the onset, and active/break monsoon cycles are of critical scientific and socio-economical importance. In most APCC/CliPAS and DEMETER models, the potential dynamical predictability limit, as estimated by the signal to noise ratio, for band-pass-filtered boreal summer intraseasonal precipitation is about 20-25 days in the Indian and the western Pacific monsoon regions. However, the practical predictability estimated by daily anomaly correlation shows that all models have virtually no skill after 5-10 days. Although models exhibit considerable errors in representing major intraseasonal modes, the principal component of the leading mode is highly correlated with Nino 3.4 index in most of models, suggesting a potential for improving intraseasonal prediction with appropriate error corrections. Comparison of a coupled and uncoupled ECHAM model simulations demonstrates that atmosphere–ocean coupling can increase the intraseasonal predictability from about 16 days to 23 days. The predictability limit is determined by time when the error growth reaches the level of the intraseasonal signal. Refer to Figs. 13 and 14 in Appendix II.
Prediction strategy
An analysis of 5 AGCM’s 20-year hindcast indicates that these models, when forced by observed SST, tend to yield positive SST-rainfall correlations in the summer monsoon regions that are quite different from the observations. These models have no skills in the heavily precipitating summer monsoon regions. Coupled atmosphere-ocean models, on the other hand, can produce qualitatively correct local lead/lag SST-rainfall correlations, enhance the ENSO-monsoon connection, and provide improved skill in summer monsoon precipitation. It is demonstrated that the prediction skill of tier-1 system is superior to the tier-2 seasonal prediction system in boreal summer over both A-AM and ENSO regions. Refer to Fig. 15 
Challenges and Recommendation
1. Rainfall forecasts in A-AM region remains moderate. Predictions over the land monsoon regions are particularly poor. Monsoon prediction remains a major challenge. There is an urgent need to determine to what extent the intrinsic internal variability of monsoon limits its predictability. 

2 The poor performance over the continental monsoon region may be partially due to poor quality of the land surface initial conditions and the models’ deficiencies in the representation of atmosphere-land interaction. Global land surface data assimilation is an urgent need. Need to determine to what extent improved land processes can contribute to improved predictive skill.

3. The notion that the summer monsoon can be modeled and predicted by prescribing the lower boundary conditions is questionable. Need to reshape our strategy in validating models and predicting summer monsoon rainfall. 
4. The MME can only capture a moderate portion of the precipitation variability. Improvement of the MME skill relies on good models. Improvement of models is essential and remains a long-term goal.
5. Continuing improvement to the models’ representation of the slow coupled dynamics (e.g., properties of the coupled ENSO mode) is essential for improving ENSO and long-lead seasonal predictions. Correction of systematic errors also holds a key

6. The accuracy and consistency of the initial conditions of the coupled ocean-atmosphere system is important for improving short-lead seasonal prediction.

� Pleas refer to table 1 in Appendix 1 for the full name of acronym. 
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